Graphs whose characteristic and permanental polynomials have coefficients of the same magnitude
نویسندگان
چکیده
منابع مشابه
On the permanental polynomials of some graphs∗
Let G be a simple graph with adjacency matrix A(G) and π(G,x) the permanental polynomial of G. Let G × H denotes the Cartesian product of graphs G and H. Inspired by Klein’s idea to compute the permanent of some matrices (Mol. Phy., 1976, Vol. 31, (3): 811−823), in this paper in terms of some orientation of graphs we study the permanental polynomial of a type of graphs. Here are some of our mai...
متن کاملSome Families of Graphs whose Domination Polynomials are Unimodal
Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.
متن کاملGraphs whose flow polynomials have only integral roots
We show if the flow polynomial of a bridgeless graph G has only integral roots, then G is the dual graph to a planar chordal graph. We also show that for 3-connected cubic graphs, the same conclusion holds under the weaker hypothesis that it has only real flow roots. Expressed in the language of matroid theory, this result says that the cographic matroids with only integral characteristic roots...
متن کاملComputing the permanental polynomials of bipartite graphs by Pfaffian orientation
The permanental polynomial of a graph G is π(G,x) , per(xI −A(G)). From the result that a bipartite graph G admits an orientation Ge such that every cycle is oddly oriented if and only if it contains no even subdivision of K2,3, Yan and Zhang showed that the permanental polynomial of such a bipartite graph G can be expressed as the characteristic polynomial of the skew adjacency matrix A(Ge). I...
متن کاملThe Expected Characteristic and Permanental Polynomials of the Random Gram Matrix
A t × n random matrix A can be formed by sampling n independent random column vectors, each containing t components. The random Gram matrix of size n, Gn = A A, contains the dot products between all pairs of column vectors in the randomly generated matrix A, and has characteristic roots coinciding with the singular values of A. Furthermore, the sequences det (Gi) and perm(Gi) (for i = 0, 1, . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2016
ISSN: 0012-365X
DOI: 10.1016/j.disc.2016.02.019